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Abstract

Background: Computational bioinformatics workflows are extensively used to analyse genomics data, with different
approaches available to support implementation and execution of these workflows. Reproducibility is one of the core
principles for any scientific workflow and remains a challenge, which is not fully addressed. This is due to incomplete
understanding of reproducibility requirements and assumptions of workflow definition approaches. Provenance
information should be tracked and used to capture all these requirements supporting reusability of existing workflows.

Results: We have implemented a complex but widely deployed bioinformatics workflow using three representative
approaches to workflow definition and execution. Through implementation, we identified assumptions implicit in these
approaches that ultimately produce insufficient documentation of workflow requirements resulting in failed execution of
the workflow. This study proposes a set of recommendations that aims to mitigate these assumptions and guides the
scientific community to accomplish reproducible science, hence addressing reproducibility crisis.

Conclusions: Reproducing, adapting or even repeating a bioinformatics workflow in any environment requires
substantial technical knowledge of the workflow execution environment, resolving analysis assumptions and
rigorous compliance with reproducibility requirements. Towards these goals, we propose conclusive recommendations
that along with an explicit declaration of workflow specification would result in enhanced reproducibility of
computational genomic analyses.
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Background
Recent rapid evolution in the field of genomics, driven
by advances in massively parallel DNA sequencing tech-
nologies, and the uptake of genomics as a mechanism
for clinical genetic testing, have resulted in high expecta-
tions from clinicians and the biomedical community at
large regarding the reliable, reproducible, effective and
timely use of genomic data to realise the vision of
personalized medicine and improved understanding of
various diseases. There has been a contemporaneous
recent upsurge in the number of techniques and plat-
forms developed to support genomic data analysis [1].
Computational bioinformatics workflows are used

extensively within these platforms (Fig. 1). Typically, a
bioinformatics analysis of genomics data involves pro-
cessing files through a series of steps and transforma-
tions, called a workflow or a pipeline. Usually, these
steps are performed by deploying third party GUI or
command line based software capable of implementing
robust pipelines.
Significant informatics knowledge, resources, tools and

expertise are required to design workflows for the ana-
lysis and interpretation of sequencing data to ultimately
obtain highly specific knowledge that can be translated
into clinical settings. Through efforts such as the 1000
Genomes project [1] and aligned approaches for analysis
of Next Generation Sequencing (NGS) data [2], a variety
of best practices for variant discovery are now available.
The resulting knowledge should be unambiguous and
consistent, repeatable (defined as a researcher redoing
their own experiment/analysis in the same environment
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for the same result/outcome [3]), and reproducible
(defined as an independent researcher/lab confirming
or redoing that experiment/analysis, potentially in a
different environment [3]) and eventually translatable
into clinical (healthcare) context. Bioinformatics data
analysis and variant discovery - in the clinical domain
in particular - requires provenance [4] information to
be captured for reproducibility. This provenance cap-
ture should store details of each workflow execution
including the software versions, the software parame-
ters, and the information including data produced at
each workflow step [5].
The reproducibility of scientific research is becoming

increasingly important for the scientific community, as
validation of scientific claims is a first step for any trans-
lational effort. The standards of computational reprodu-
cibility are especially relevant in clinical settings
following the establishment of Next Generation Sequen-
cing (NGS) approaches. It has become crucial to
optimize the NGS data processing and analysis to keep
at pace with the exponentially increasing genomics data
production. The ability to determine DNA sequences
has outrun the ability to store, transmit and interpret
this data. Hence, the major bottleneck to support the
complex experiments involving NGS data is data pro-
cessing instead of data generation. Computational bio-
informatics workflows consisting of various community
generated tools [6] and libraries [7, 8] are often deployed
to deal with the data processing bottleneck.
Despite the large number of published literature on the

use and importance of -omics data, only a few have been
actually translated into clinical settings [9]. The committee

on the review of -omics-based tests for predicting patient
outcomes in clinical trials [10] attributed two primary
causes; inadequate design of the preclinical studies and
weak bioinformatics rigour, for this limited translation.
The scientific community has paid special attention with
respect to benchmarking -omics analysis to establish
transparency and reproducibility of bioinformatics studies
[11]. Nekrutenko and Taylor [12] discussed important
issues of accessibility, interpretation and reproducibility
for analysis of NGS data. Only ten out of 299 articles that
cited the 1000 Genomes project as their experimental ap-
proach used the recommended tools and only four studies
used the full workflow. Out of 50 randomly selected pa-
pers that cited BWA [13] for alignment step, only seven
studies provided complete information about parameter
setting and version of the tool. The unavailability of pri-
mary data from two cancer studies [14] was a barrier to
achieve biological reproducibility of claimed results.
Ioannidis et al. [15] attributed unavailability of data,

software and annotation details as reasons for non-
reproducibility of microarray gene expression studies.
Hothorn et al. [16] found that only 11% of the articles
conducting simulation experiments provided access to
both data and code. The authors reviewing 100 Bioinfor-
matics journal papers [17] claimed that along with the
textual descriptions, availability of valid data and code
for analysis is crucial for reproducibility of results. More-
over, the majority of papers that explained the software
environment, failed to mention version details, which
made it difficult to reproduce these studies.
To facilitate genomic data analysis, various Workflow

Management Systems (WMS) are specifically designed

Fig. 1 Computational bioinformatics workflows are often deployed to deal with the data processing bottleneck. A typical workflow consists of a
series of linked steps that transform raw input (e.g. a fastq file produced as a result of NGS data) into meaningful or interpretable output (e.g. variant
calls). Typically, these steps are performed by specific tools developed to tackle a particular functional aspect of genomic sequence analysis. Workflows
can have variable number of steps depending on the type of analysis performed, hence can be simple or complex
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and available to meet the challenges associated with
such data [18]. Typically WMS are designed to support
the automation of data-driven repetitive tasks in addition
to capturing complex analysis processes associated with
data processing steps. Having sufficient provenance infor-
mation plays a major role in understanding data process-
ing steps incorporated in a workflow and ensures the
consistency of the results with the known (current) best
practice [19]. Ludäscher et al. [20] reviewed common
requirements of any scientific workflow, most of which
(such as data provenance, reliability and fault-tolerance,
smart reruns and smart semantic links) are directly linked
to provenance capture. In addition to workflow evolution
[21], prospective (defined as the specification of the work-
flow used in an analysis) as well as retrospective (defined
as the run time environment of an execution of the work-
flow in an analysis) provenance [22] was identified as an
essential requirement for every computational process in a
workflow to achieve reproducibility of a published analysis
and ultimately accountability in case of inconsistent re-
sults. Several provenance models have been proposed and
implemented to support retrospective and prospective
provenance [23–25] but these are seldom used by WMS
used in genomic studies. Despite high expectations,
various existing WMS [26–30] do not truly preserve all
necessary provenance information to support reproduci-
bility - particularly to the standards that might be ex-
pected for clinical genomics.
The inability to reproduce and use exactly the same

procedures/workflows means that considerable effort
and time is required on reproducing results produced by
others [12, 16, 17, 31]. At present the consolidation of
expertise and best practice workflows that support re-
producibility are not mature. Most of the time, this is
due to the lack of understanding of reproducibility re-
quirements and incomplete provenance capture that can
make it difficult for other researchers to reuse existing
work. The sustainability of clinical genomics research re-
quires that reproducibility of results goes hand-in-hand
with data production. We, as the scientific community,
need to address this gap by proposing and implementing
practices that can ensure reproducibility, confirmation
and ultimately extension of existing work.
Towards these objectives, this work contributes to

the classification of the available approaches to work-
flow definition. Further we identified assumptions im-
plicit in the investigated representative workflow
definition approaches. In a previous study [19] that
investigated challenges of large scale biomedical work-
flows, we had proposed, for reproducibility of science,
one of the most important steps is to record sum-
mary of assumptions followed in the workflow. To
address the aforementioned assumptions, we propose
a generalised set of recommendations to researchers,

which can be used to mitigate the challenges associated
with incomplete documentation of an analysis, hence sup-
porting reproducibility.
We have implemented a complex yet widely used ex-

emplar variant calling workflow [32] using three
approaches to workflow definition (detailed in section
Approaches to workflow definition and implementation)
to identify assumptions implicit in these approaches.
The intricate underlying details associated with workflow
implementation, considered needless to be stated, lead
to various factors often hidden from the user. In this
study, we refer to such factors as assumptions and inves-
tigate workflow definition approaches to highlight these
assumptions that lead to limited or no understanding of
reproducibility requirements due to lack of documenta-
tion and comprehensive provenance trace. Our study
proposes a generalised set of recommendations for bio-
informatics researchers to minimise such assumptions
hence support reproducibility and the validity of gen-
omic workflow studies.

Methods
We have implemented an end-to-end complex variant
calling workflow based on the Genome Analysis Tool
Kit (GATK) [32] recommended best practices, using
three different exemplars to workflow definition ap-
proaches: Galaxy [27], Cpipe [33] and CWL [34]. The
GATK best practice variant discovery workflow was
selected because it provides clear, community advocated
step-by-step recommendations for executing variant dis-
covery analysis with high throughput sequencing data
on human germline samples. The next section will
broadly discuss the classified approaches typically
followed for workflow design and implementation and
justify our choices for the systems used in this case
study.

Approaches to workflow definition and implementation
In this section, we classify approaches to workflow defin-
ition and implementation into three broad categories.
Specifically, these categories have been devised on the basis
of the current most common practices in the computa-
tional genomic analysis such as the pre-built pipelines
driven by individual laboratories or groups; pre-configured
graphical interface based workbenches and standardized
workflow description implementations. This categorisation
provides the basis for the selection of exemplar workflow
systems investigated in this study.

Bioinformatics specific pre-built pipelines
Several automated bioinformatics-specific pipelines such
as Cpipe [33], bcbio-nextgen [35] and others [36, 37]
have been developed using command line tools to sup-
port genomic data analysis. These pipelines are driven
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and supported by individual laboratories, which have de-
veloped customized pipelines for processing data. This
approach has resulted in considerable variability in the
methods used for data interpretation and processing.
The advantages of these pipelines include editing pipe-
lines on remote servers without requiring access to GUI
so that they are easily administered through source code
management tools [38]. However, the command line
based pipeline frameworks such as bpipe [39],
Snakemake [38] and Ruffus [40] used to develop these
systems are not flexible enough to support integration of
new user-defined steps and analysis tools. Working with
such systems requires expertise with command-line pro-
gramming and broad computational knowledge as these
systems extensively use individual scripts to tie together
different components of the pipelines. These scripts con-
trol variables, dependencies and conditional logic for the
efficient processing of the data and hence are often diffi-
cult to be reproduced. These systems assume the
provision of the same physical or virtualized infrastruc-
ture used to run the initial analysis, including scripts,
test data, tools, reference data and databases. The imple-
mentation overheads of such pipelines include configur-
ation and installation of software packages, parameter
setting alteration, debugging and input/output inter-
facing. In summary, considerable effort and excessive
amount of time is required to create, understand and
reproduce a ready-to-use pipeline.

Graphical User Interface (GUI) based integrative workbenches
To tackle some of the challenges of pipelines created
using command-line interface based pipeline frame-
works, workbenches [20, 27, 30, 41–43] have been devel-
oped to allow easy and customised workflow definitions
using a GUI. Few of the referenced workbenches assist
researchers to specify the goals, requirements and con-
straints for workflows using semantic reasoning, hence
automating and validating complex data processing tasks
[44]. Semantic workflow management systems support
setting up an analysis by providing parameter prefer-
ences, alternate software tools and relevant datasets built
upon the analytic constraints articulated by the user
resulting in access to domain specific expertise for work-
flow design and configuration [45]. The semantic de-
scriptions expect complex validation rules for input and
output data objects, hence haven’t been widely adopted
because of the complications involved in modelling sys-
tems, the rapid evolution of semantic web services and
the majority of existing approaches adopting a non-
semantic approach [46]. GUI based workbenches are
typically expected to be highly featured and pre-
configured with the modular tools to offer interactive
design to a wide range of audience with varying degree
of expertise. These often include reference datasets and

configuration settings to aid users in designing auto-
mated and robust pipelines that provide managed access
to a library of systems with abstraction of the interaction
layer and equipped with a workflow layer that captures
tool versions and parameter information. The GUI
workbenches can be easily used with already existing
tools but adding a new tool (plug in) or executable
wrapper requires an in-depth familiarity with acceptable
input file types, parameter settings, exception handling
and resource management.
However, these systems do not require any local instal-

lations for analysis tools and customisation of analysis
environment; hence have lower infrastructure mainten-
ance costs. On the other hand, the availability of external
services and customised tool repositories poses a risk to
reproducibility as it will be impossible to reproduce a
workflow created using a service which has been chan-
ged or is no longer available. Similarly workflows imple-
mented on one system may not be reproducible when
imported into another system due to incompatibility be-
tween locally customised environments.

Standardized approach to workflow definition
The heterogeneity in the field of in silico genomic ana-
lysis has motivated researchers to work towards stan-
dardized workflow description languages such as
Common Workflow Language (CWL) and Workflow
Definition Language (WDL) [47]. A variety of software
platforms, such as individual workstation to high per-
formance computing platforms (cloud, grid or cluster),
can be deployed to implement these systems. Such sys-
tems provide a formal specification covering all aspects
of a workflow implementation including tool versions,
input data, customizable parameter settings and the
workflow runtime environment that is completely inde-
pendent of the underlying compute environment. Such
approaches provide software specifications that help re-
searchers define and implement portable, easy to use
and reproducible workflows. These specifications aim
to describe a data and execution model allowing users
to have full control for creating and running the
workflow by explicitly declaring the relevant environ-
ment, resources and other customizable settings in
the specification.

Case study
To comprehensively understand and identify assumptions
that are implicit in the approaches detailed in section Ap-
proaches to workflow definition and implementation, we
consider the impact of reproducibility requirements on
real-world genomic systems. To this end, we have imple-
mented an end-to-end complex variant calling workflow
based on the GATK recommended best practices, using
three exemplar workflow definition approaches: Galaxy,
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Cpipe and CWL as major representatives of the existing
workflow systems used to analyse genomics data. Galaxy,
an example graphical user interface based integrative
framework, is an open source, web-based platform for
accessible, reproducible and transparent genomics re-
search. It supports degrees of workflow provenance with
focus on assisting the capture of computational methods
that are used. Cpipe an exemplar of bioinformatics spe-
cific prebuilt pipelines, adopted by Melbourne Genomics
Health Alliance, uses a programmatic approach which
effectively includes everything necessary for reproducing a
given genomic analysis, provided the same physical or vir-
tualized infrastructure used to run the initial analysis, in-
cluding scripts, test data, tools, reference data and
databases. CWL, an exemplar of declarative approach to
workflow definition, enables full control to users for creat-
ing and running the workflow using a specification which
is a standard descriptor for relevant environment, com-
mand line tools and other customizable settings; hence
making very few internal assumptions about the require-
ments of the workflow. We have restricted our case study
to have one representative system from each category de-
fined in section Approaches to workflow definition and
implementation.
We used chromosome 21 data for this study. It was

extracted from The Genome in a Bottle dataset
NA12878 which is widely used as test data because of
the pre-existing and extensive analysis done on this sam-
ple and the agreed variant call truth set [48] that can be
used for comparative evaluation. Other files required for
the GATK workflow execution include human reference
genome (hg19.fasta) and the known variant (vcf ) refer-
ence files (available at https://github.com/skanwal/
GATK-CaseStudy), which were obtained from the
resource bundle provided by the Broad Institute.1

Workflow enactment using the selected systems
This section details the enactment process of the GATK
variant calling workflow using three exemplar workflow
definition approaches. We elaborate the assumptions
implicit in each approach while dealing with various
workflow features.

Cpipe
Cpipe belongs to the category of bioinformatics specific
prebuilt pipeline. It was deployed on the National
eResearch Collaboration Tools and Resources
(NeCTAR) research cloud.2 The instructions on the
official Cpipe GitHub page [49] were followed to setup
the pipeline.

� The instance launched for executing cpipe had
16cores and 64GB RAM. The automated mechanism
to document and convey compute requirement for a

specific customized analysis is not defined. Rather
the prebuilt pipelines presume availability of
sufficient compute power to deal with data intensive
steps such as sequence alignment.

� To cater for the storage requirement of the pipeline,
1000GB volume was mounted to the cloud instance.
Similar to compute requirement, there is no
automated mechanism for explicitly recording
storage requirement. As the genomic sequence
analysis involves dealing with huge input and
intermediate datasets (including whole genome
reference data), the prebuilt pipelines assume
availability of sufficient capacity to deal with data
storage requirements.

� The installation script provided with cpipe compiled
tools such as BWA and downloaded databases such
as Variant Effect Predictor (VEP) and human
reference sequence files. The prebuilt pipelines
connect to online resources to download and
compile tools and reference datasets used in the
analysis. FTP clients and SSH transfer tools are used
for moving datasets over distributed resources. The
availability of high performance networking
infrastructure is assumed to move bulk data using
wide area network (WAN).

� The base software dependencies for underlying
programming frameworks such as Java and Python
were required to execute tools in cpipe. The prebuilt
pipelines assume that users are responsible to solve
base software dependencies for the pipeline;
otherwise the pipeline would fail to execute.

� Cpipe requires downloading and pre-processing the
reference data set to generate secondary files since
the indexing step is not explicitly defined as part of
the pipeline but included in a separate script. The
pre-built pipelines expect users to perform pre-
processing steps and hence assume availability of
input data files to be made available before execution
of the pipeline.

� Cpipe uses a copyrighted tool, ANNOVAR, for
annotating variant calls. The prebuilt pipelines
deploying copyrighted or proprietary tools, instead
of open source software, assume users to ensure
availability of all such licensed resources.

� Cpipe requires a specific directory structure in
order to execute the analysis on any sample. As the
prebuilt pipelines are customized to support
explicit analysis requirements, these assume
availability of a specific analysis environment with a
set directory structure, having tools and datasets
appropriately located to support seamless execution
of the pipeline. Files and tools are expected to be
placed according to particular file system hierarchy
since paths are hard coded in the scripts.
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Galaxy
Galaxy was selected from the category of GUI based
Integrative workbenches to implement GATK variant
calling workflow (Fig. 1-Additional file 1).3 The Genome
Virtual Laboratory (GVL) [50] was used for launching a
pre-configured Galaxy instance on an OpenStack-based
cloud environment.

� Specifically, a GVL 8-core cloud instance with 32GB
RAM was launched to provision a fully configured
Galaxy for the analysis of NA12878. Similar to pre-
built pipelines, GUI based workbenches also assume
the availability of sufficient compute power to
process data, hence are user dependent for the
provision of these resources. Galaxy workbench
lacks a prior check to ensure availability of sufficient
compute resource.

� A 1000GB volume was mounted to the GVL
instance launched. GUI based workbenches require
the user to provide sufficient storage capacity to deal
with the data storage, hence the workflows built
using these workbenches have little or no explicit
declaration of such requirements.

� Chromosome 21 fastq files, known variant vcf
databases and hg19 reference sequence fasta file
(provided in the supplementary material) were
uploaded to Galaxy. Galaxy uses inbuilt reference
files if not provided by users but other databases are
expected to be provided by users. Even if a complete
workflow built on such systems is published, not
only is the provision of input data the user’s
responsibility but these systems also assume the
availability of supporting data (such as reference
sequence and variant databases) to generate results.

� During implementation, it was observed that Galaxy
automatically performs certain steps without
explicitly declaring them such as indexing the
provided reference genome, creating index files for
the BAM output file (using Picard [51] mark
duplicates), generating a temporary reference
sequence dictionary as part of the local realignment
steps and creating a fasta index file for GATK tools
(Fig. 2). GUI based workbenches simplify the
interface and facilitate user by hiding the underlying
details from the user. This results in an inability to
replicate or reproduce the same workflow due to
incomplete or implicit documentation.

� In Galaxy, reference sequence indexing, SAM to
BAM conversion and sorting the resulting BAM file
is embedded in the alignment step and does not
appear in the final workflow diagram. The visual
dataflow diagram produced by such systems is
assumed to be a complete picture of the processes
carried out during a workflow execution. The

absence of an entire step of pre-processing, process-
ing or post processing data from the workflow de-
tails especially from visual representation leads to
incomplete workflow knowledge when attempted to
be reproduced.

� The Galaxy toolshed is populated with tools
configured using XML specifications requiring
technical and extensive programming expertise to
write XML configuration files for the tool versions
that are not available in the toolshed. A Galaxy
workflow requires availability of uniform toolsheds
across Galaxy instances, therefore a workflow
created using particular tool versions on one
instance will fail to execute on instances with a
toolshed supporting different tool versions. This
renders it inflexible, static and a challenge to
reproducibility. The workflow developers assume
uniformity of tool repositories across different
instances of a workbench. Hence, workflows created
using GUI based workbenches are tied to specific
versions of tools used to declare the workflows and
the absence of these specific tool versions will result
in failed execution of workflow.

CWL
CWL aims for a standardized approach to workflow
definition. It was cloned and installed following the
instructions from the GitHub repository [52].

� A reference implementation of CWL designed
specifically for Python 2.7 was cloned and installed
following the directions from the GitHub repository
manual.4 The availability of the specific underlying
language and its particular version for reference
implementation (Python in this case) is assumed for
successful installation and functioning of the
reference implementation.

� Working with CWL was challenging as compared
to Cpipe and Galaxy because it is an ongoing,
constantly developing community effort and tool
wrappers for most of the required tools for this
study were not available. Implementing the GATK
workflow in CWL required the knowledge of Yet
Another Markup Language (YAML) and JavaScript
Object Notation (JSON) for development of a
number of CWL definition files including YAML
tool wrappers, JSON job files containing the input
parameters and YAML test files for conformance
tests (Fig. 2-Additional file 1).5 It is assumed that
any user wanting to utilise these definition files
along with the workflow definition should have
basic understanding of YAML and JSON. In
addition, if a newer version or different tool is
required for any step, the user is expected to
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develop the definition files for which in depth
knowledge of underlying languages is required.
Therefore, the standardized approaches on the one
hand provide users with the freedom to declare every
aspect of the workflow but on the other hand assume
the implicit knowledge of underlying languages
leading to steep learning curves for naïve users.

� The workflow implementation used tools such as
BWA, GATK and Picard Toolkit which were
provided through container-based Docker6 images
including all required software packages. This step
required installation of Docker which again was

assumed to be available on the system executing the
workflow. Although CWL encourages use of Docker,
it also facilitates the local installation of required
tools which should not be preferred as it will lead to
localised solutions that fail to execute elsewhere. In
both cases, certain assumptions were made regard-
ing availability of the underlying tool and their link
with the tool definition. Hence, the standardized
approaches despite making efforts to explicitly
declare every step of the workflow assume the
underlying software availability for enactment of a
workflow which is not always the case.

Fig. 2 Screenshots of the Galaxy interface showing (a) A temporary sequence dictionary file creation using CreateSequenceDictionary as part of
RealignTargetCreator and IndelRealigner step and (b) “Map with BWA-MEM” step combining indexing reference data, SAM to BAM conversion
and sorting of the resultant aligned (BAM) file
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� As genomic workflows usually involve working with
large datasets, the availability of compute and
storage resources is assumed to be managed by
users to successfully enact workflows.

Results and discussion
The expectation for science to be reproducible is consid-
ered fundamental but often not tested. Every new dis-
covery in science is built on already known knowledge,
that is, published literature acts as a building block for
new findings or discoveries. Using this published litera-
ture as a base, the next level of understanding is devel-
oped and hence the cycle continues. Therefore, if we
cannot reproduce already existing knowledge from the
literature, we are wasting a lot of effort, resources and
time in doing potentially wrong science [53] resulting in
“reproducibility crisis” [54]. If a researcher claims a novel
finding, someone else, interested in the study, should be
able to reproduce it. Reports are accumulating that most
of the scientific claims are not reproducible, hence ques-
tioning the reliability of science and rendering literature
questionable [55, 56]. The true reproducibility of experi-
ments in different systems has not been investigated
rigorously in systematic fashion. For computational work
like the one described in this paper, reproducibility not
only requires an in depth understanding of science but
also data, methods, tools and computational infrastruc-
ture, making it a non-trivial task. The challenges im-
posed by large-scale genomics data demand complex
computational workflow environments. A key challenge
is how can we improve reproducibility of experiments
involving complex software environments and large
datasets. Although this question is pertinent to scientific
community as a whole [57], here we have focused on
genomic workflows.
Reproducibility of an experiment often requires repli-

cation of the precise software environment including the
operating system, the base software dependencies and
configuration settings under which the original analysis
was conducted. In addition, detailed provenance infor-
mation of required software versions and parameter
settings used for the workflow aids in the reusability of
any workflow. Provenance tracking and reproducibility
go hand in hand as provenance traces contribute to
make any research process auditable and results verifi-
able [58]. The variant calling workflows (as our case
study) result in genetic variation data that serves to en-
hance understanding of diseases when translated into a
clinical setting resulting in improved healthcare. Keeping
in view the critical application of the data generated, it is
safe to state that entire process leading to such biological
comprehensions must be documented systematically to
guarantee reproducibility of the research. However a
generalised set of rules and recommendations to achieve

this is still a challenge to be met as workflow implemen-
tation, storage, sharing and reuse significantly varies de-
pending on the choice of approach and platform used by
the researcher. A common phenomenon to every ap-
proach however is ‘workflow decay’ [59] caused by the
factors such as the evolution of technical environment
used to implement a workflow, updates in the state of
external factors such as databases and unavailability of
third party web resources. Our study contributes to un-
derstanding the requirements of reproducibility of gen-
omic workflows by investigating a set of assumptions
evident from practical implementation of the case study
and providing standardised recommendations for com-
putational genomic workflow studies.
Owing to the production of exceptional amounts of

genomics data, a typical human exome sequence analysis
(for example the current case study) would require a
terabyte of storage and up to 64GB RAM of compute
power. As the computational dependencies of workflows
have grown complex from simple batch execution to
distributed and parallel processing, researchers should
document and provide the amount of storage and com-
pute power required by a workflow to run successfully.
Long term reproducibility of scientific results can be
hard to achieve if the appropriate resources required to
reproduce the workflow are not fully declared. Apart
from declaration of compute and storage resources re-
quired to successfully execute a workflow, comprehen-
sive efforts by workflow developers could result in better
management of dependencies. A tool or a workflow built
on a specific computing platform requires the details of
the exact version of the underlying base software to exe-
cute successfully. One example is a requirement of a
particular version of Java (1.8) to execute tools from
GATK or Picard toolkit used in a workflow. The absence
of such information about the base software require-
ments such as Java or Python would result in at least
one unsuccessful execution of the workflow. We rec-
ommend workflow developers devise a mechanism
(e.g. provide a script) that should implement check-
points to analyse the suitability of computing platform
before the execution attempt. This will ideally guide
the researchers trying to reproduce a workflow who
otherwise would waste considerable time tackling the
‘dependency hell’. The burden obviously shifts to the
workflow developers but in the longer run, it would
be helpful to declare and document the very basic
information, which is considered too obvious to state.
Genomic data analysis has grown complex with the in-

creased involvement of customized scripts and online re-
sources needed to carry out difficult tasks, increasing
both the technical knowledge required and the chance
that something will break. One of the major reasons for
non-reproducibility of workflows is use of volatile third
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party resources such as databases, tools or websites [59].
Many workflows cannot be run because the third party
resources they rely on are no longer available and the
results could only be reproduced using the specific ver-
sion of the software, hence rendering workflows un-
usable. These factors can be considered out of control of
the researchers as every time an analysis is repeated, it
may assume that the system it is being reproduced on
comes preconfigured with all the workflow dependen-
cies. Also, the download of large genomic datasets from
the third party online resources demands users ensure
availability of high performance networking infrastruc-
ture on their part. Volatile third party resources is an
open end problem to which several solutions have been
proposed, such as alternative resources or local copy of
the resource, to mitigate the consequences [60]. How-
ever, we believe that alternative resources might not result
in the same output, hence a barrier to reproducibility of
results [19]. The services hosting third party resources are
generally in no agreement to continuously supply these re-
sources. Even the most sophisticated and widely used
technologies such as container based approaches require
connection to the network and online resources at least
once for building of the required software components.
Third party services such as copyrighted or proprietary

resources should be avoided in research involving use of
genomic datasets as they can result in an inability to ac-
cess original resources or tools, overshadow the ramifi-
cations of the research and halt reproducibility. The
possible solutions to reproduce the research involving
such tools can be through buying or re-implementing
these software, which is often not a realistic expectation.
Instead the community should push forward to work to-
wards open source software and collaborative science
[61], which makes it easier to communicate and access
scientific knowledge. The efforts such as Centre for
Open Science7 are working towards encouraging open-
ness and reproducibility of scholarly research, hence
accelerating scientific progress.
Additionally, explicit requirements for specific analysis

environment, e.g. hard coded paths and names embed-
ded in source code, should be avoided in the pipeline
definition. In our case study, creation of an analysis en-
vironment with a particular directory and file naming
convention was required by Cpipe to execute the work-
flow successfully [33]. From our experience, we recom-
mend that this should not be a rule as it adversely
affects the portability of the workflow. An extra respon-
sibility on a researcher reproducing someone else’s
workflow is to define the analysis environment and re-
lated parameters. We recommend avoiding the hard
coding file names, absolute file paths, host names, user
names and IP addresses. Workflow developers should
ensure their workflows are independent of a specific

analysis environment to allow their workflows to be
more readily executable.
In principle, workflow management systems such as

Galaxy use a publicly shared repository for published
tools and workflows. In practise this is a challenge, as
there are many ways to set up the analysis to begin with.
Galaxy allows the users to choose the computing plat-
form such as centralised public galaxy, galaxy on cloud
or as a localised instance. There are more than 80 publi-
cally shared galaxy servers8 each containing different
toolsets. Workflow developers can create a workflow
using their localised instances and later publish these
workflows assuming uniformity of tool repositories
across different platforms. This can result in static and
inflexible solutions, hence challenging to be reproduced
as it assumes uniformity of repositories across different
platform instances. The workflow developers are recom-
mended to ensure the availability of the tools used in the
workflow implemented on local instances of any work-
flow management system. These tools should either be
shared via repositories associated with a certain work-
flow system or using open source code sharing solutions
e.g. through a git repository. The repository maintainers
should make the process of adding tools to centralized
repositories straightforward and easy to implement. This
would result in cost effective analysis encouraging
researchers to reuse the resources provided instead of
reinventing the wheel.
Input such as sequencing reads in FASTA files and ref-

erence datasets play a major role to enable reproducibil-
ity of genomic workflows and ultimately achieve
repeatable results. Even in the case where the user has
comprehensive understanding of the workflow analysis,
absence of input data annotations hinders the successful
execution of the workflow. Analysis tools usually require
strict adherence to file formats (e.g. reference sequence
should be a single reference sequence in FASTA format
or the names and order of the contigs in the reference
used must exactly match that of one of the official
reference canonical orderings). This demands provid-
ing access to primary data used in the analysis. How-
ever, a major implication of this idea lies in the
security and ethical consideration of genomics data.
The community needs to address this issue by provid-
ing secure controlled access to sensitive genomic data.
Also, the size of the genomic datasets can be a prob-
lem in sharing the datasets and providing them to
workflow specifications. In such cases, where it is not
possible to package or share datasets with the work-
flow, comprehensive annotations will assist re-
searchers to decide on the appropriate datasets for
the workflow. Public repositories9,10 and resources
can also be used to archive, preserve and share gen-
omic datasets.
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With ever evolving repositories, services, tools and
data, workflow specification alone is rarely sufficient
to ensure reproducibility and reusability of scientific
experiments, resulting in workflow decay. One way to
avoid the workflow decay is to provide complete
provenance capture including annotations for every
process during workflow execution, the parameters
and links to third party resources including data and
external software services. This information should be
available with the published workflow. The relevant
parameter setting for each tool used in an analysis is
also essential to ensure reproducibility of results
hence should be provided with the workflow. Alterna-
tively workflow developers should package all associ-
ated tools when the workflow is published.
Workflows should be treated as first class data ob-
jects [62] and container technologies such as Docker,
OpenVZ11 or LXC12containers should be used to
package the environment and configuration together.
Approaches such as CWL utilise Docker containers,

work on the principles of comprehensive declaration
and make minimal internal assumptions about the pre-
cise software environment, base software dependencies,
configuration settings, alteration of parameters and soft-
ware versions. Such approaches aim to build flexible and
customized workflows including intricate details of every
process in a workflow such as requirement declarations
for the runtime environment, data and metadata, input

and output parameters and command-line executable.
This results in archiving of the entire framework of the
software environment that can be re-established to sup-
port reproducibility. However, working with this kind of
approach is not an easy task and requires lots of time,
efforts and substantial technical support (in our case
study this was provided by the CWL team) to first learn
the principles of the language and then coding to
implement system configuration of a complex genome
analysis workflow.
Hence, the details vital to reproducibility of any

computational genomic analysis should be completely
documented to ensure capture of critical provenance
information. From our experience gained from this study
we posit that the workflow developers along with other
mechanisms should collectively document the important
pieces of information through graphical representation
of the workflow as indicated in Fig. 3. The flowchart in
the figure can be used as a model to record a high level
representation of the underlying complex workflow. It is
a blueprint containing all the artefacts including tools,
input data, and intermediate data products, supporting
resources, processes and connections between these
artefacts. To re-enact any workflow the users should be
directed to explicitly understand and declare all the
requirements mentioned in such workflow representation.
The proposed representation of the variant calling work-
flow shown (Fig. 3) contains all the necessary artefacts

Fig. 3 Graphical representation of the GATK workflow representing artefacts and information necessary to be captured as part of workflow
execution. The description of main steps is depicted in the black rectangles whereas the tools responsible to carry out the steps are shown in grey
ellipses. Input and reference files (brown rounded rectangles) are shown separately and labelled by the dataset name. The primary and secondary output
files (if any) are shown in dark and light green snip diagonal corner rectangles respectively. The input and output data flow for each workflow step is
demonstrated through red and green dotted arrows respectively. The connection between processes in a workflow is represented by blue solid arrow.
The yellow highlighted parts of the workflow are the pivotal processes not explicitly declared in Galaxy and Cpipe. The red flag highlights the main
input and final output for the workflow
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needed to support reproducibility requirements and prov-
enance tracking across the platforms. The concept of
visual representation of the workflow is implemented in
only a few GUI based workbenches [27, 30, 63] but such
high level representation depicts an inadequate illustration
of the analysis as evident from Fig. 4.
During this study we observed that the ultimate

Galaxy workflow diagram does not state the utilization
of some tools such as BWA Index, SAMtools View,
SAMtools Sort, SAMtools Faidx and Picard CreateSe-
quenceDictionary. Therefore the incomplete Galaxy
workflow diagram (Fig. 4) is challenging to be repro-
duced on other platforms, as necessary information
about each step is not recorded. Hence, platforms
making assumptions about some aspects of a work-
flow without documenting them as part of final work-
flow diagram result in incomplete understanding of
the reproducibility requirements.
The workflows used to implement biomedical data

analyses have grown complex [64] making it difficult to
understand and reproduce such experiments. A graph-
ical representation (Fig. 3) allows visualization of mul-
tiple aspects of workflow definition and implementation
including data manipulation and interpretation. Enabling
simplicity by representing complex workflows in human
readable formats can significantly reduce the complexity
of such analyses through improved understanding. As
the studies involving complex analysis tasks encompass
human judgments, it is important that the research com-
munity works in this direction to help researchers trans-
fer their knowledge and expertise using proposed rich
and easy to create representations. Further, the proposed
human readable description (along with the machine

readable ones) can help identify bottlenecks in the
analysis and ultimately accelerate reproducibility of data
driven sciences.

Conclusion
Reproducibility of computational genomic studies has
been considered as a major issue in recent times. In this
context, we have characterised workflows on the basis of
approach used for their definition and implementation.
To evaluate reproducibility and provenance require-
ments, we implemented a complex variant discovery
workflow using three exemplar workflow definition ap-
proaches. We identified numerous implicit assumptions
interpreted through the practical execution of the work-
flow, leading to recommendations for reproducibility
and provenance, as shown in Table 1.
Workflows are often (typically!) dependent on the

replication of complex software environments necessitat-
ing substantial technical support to reproduce the
configuration settings required for the analysis. This
varies depending on the different approaches taken to
workflow design and execution. The assumptions
followed in each approach are one of the reasons for this
heterogeneity that subsequently results in incomplete
documentation of workflow requirements. Our case
study illustrates the variability in workflow implementa-
tions based on the platform selected that can impact on
crucial requirements for reproducibility and provenance
that is currently missing from workflows. Ensuring
reproducibility is highly dependent on the efforts of
researchers to convey their analysis in a way that is
comprehensive and understandable. We posit that
adhering to proposed recommendations along with an

Fig. 4 The variant calling workflow representation in Galaxy
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explicit declaration of workflow specification would
result in enhanced reproducibility of computational
genomic analyses. The graphical representation pro-
posed in this study can potentially be translated using
the available community accepted standards for prov-
enance [65] and tested across different platforms to
generalise it for further extension to other workflows.
In future, it would be interesting to extend this case
study with other workflow systems such as Wings,
Kepler, WDL, VisTrails and Taverna to analyse the re-
producibility and provenance requirements, hence poten-
tially updating the recommendations if any assumption
specific to these systems is identified.

Endnotes
1www.broadinstitute.org/gatk/guide/article.php?id=1213
2https://nectar.org.au/research-cloud/
3https://github.com/skanwal/GATK-CaseStudy/blob/
master/SupplementaryMaterial/AdditionalFile1.pdf

4https://github.com/common-workflow-language/cwltool
5https://github.com/skanwal/GATK-CaseStudy/blob/
master/SupplementaryMaterial/AdditionalFile1.pdf

6https://www.docker.com/

7https://cos.io/
8wiki.galaxyproject.org/PublicGalaxyServers
9http://www.data.cam.ac.uk/funders
10http://www.nature.com/sdata/policies/repositories
11https://openvz.org/Main_Page
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Table 1 Summary of assumptions (detailed in section Workflow enactment using the selected systems) and corresponding
recommendation for reproducibility

Assumptions Recommendations

Availability of sufficient storage and compute resources
to deal with processing of big genomics data

Workflow developers should provide complete documentation of compute
and storage requirements along with the workflow to achieve long-term
reproducibility of scientific results.

Availability of high performance networking infrastructure
to move bulk genomics data

Considering the size and volume of genomic data, researchers reproducing
any analysis should ensure that an appropriate networking structure for
data transfer is on hand

The computing platform is preconfigured with the base software
required by the workflow specification

Workflow developers should provide a mechanism with check points to
ensure compatibility of the computing platform deployed by a researcher
to reproduce the original analysis

Users are responsible to ensure access to copyrighted
or proprietary tools

Community should encourage work leveraging open source software
and collaborative approaches thereby avoiding use of copyrighted
or proprietary tools

Analysis environment with a particular directory structure and file
naming conventions is setup before executing the workflow

Workflow developers should avoid hardcoding environmental parameters
such as file names, absolute file paths and directory names that would
otherwise render their workflow dependent on a specific environment
setup and configuration

Appropriate datasets are used as input to the tools incorporated
in the workflow

As bioinformatics analysis tools require strict adherence to input or
reference file formats, data annotations and controlled access to
primary data can ultimately help reproduce the workflow precisely

Users will have a comprehensive understanding of the analysis and
the provided information (in the form of incomplete workflow diagram)
is sufficient to convey high level understanding of the workflow

Workflow developers should provide a complete data flow diagram serving
as a blue print containing all the artefacts including tools, input data,
intermediate data products, supporting resources, processes and the
connection between these artefacts

Availability of specific tool versions and setting relevant
parameter space

Tools should either be packaged along with the workflow or made available
via public repositories to ensure accessibility to the exact same versions and
parameter settings as used in the analysis being reproduced, hence
supporting flexible and customizable workflows.

Users to have proficient knowledge of the specific reference
implementation

This factor might be considered out of control of the workflow developers
but detailed documentation of the underlying framework used and
community support can help in overcoming the associated learning curve
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